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A b st r ac t  

The transformation curve of VaTe4 (with a superstructure of the Cr3S4 type) into the 
corresponding high temperature phase (with a partially filled CdI2-type structure) is 
calculated using a statistical model derived in a previous paper. A long-range order 
parameter 77 is defined and it is demonstrated that the ordered superstructure breaks 
down when a certain defect concentration corresponding to a critical value -q¢=0.79 is 
reached. It is also shown that the asymmetrical shape of the transformation curve can 
only be explained if an additional (5:8)-type superstructure is present within the ho- 
mogeneity range of the V3Te4-phase. The calculated phase boundary is in good agreement 
with the experimentally determined phase diagram. 

1. I n t r o d u c t i o n  

Metallic a l loys a re  of ten  found  to fo rm solid so lu t ions  at  high t e m p e r a t u r e s ,  
and  p h a s e s  wi th  cons ide rab le  r anges  of  h o m o g e n e i t y  are  qui te  c o m m o n .  
Such solid so lu t ions  a re  usual ly  ba sed  on a s tat is t ical  d is t r ibut ion  of  the  
a t o m s  of  the  c o m p o n e n t s  ove r  a c o m m o n  set  o f  lat t ice sites. V~th dec reas ing  
t e m p e r a t u r e s ,  however ,  the  f o r m a t i o n  o f  so-cal led  s u p e r s t r u c t u r e s  is f requen t ly  
obse rved ,  whe re  this c o m m o n  se t  o f  lat t ice si tes s e p a r a t e s  into different  
subla t t ices ,  each  of  which  can  a c c o m m o d a t e  p re fe ren t ia l ly  e i ther  one  cer ta in  
kind of  a t o m  or  vacanc ies .  

Pe r fec t  o rde r ing  is on ly  poss ib le  at abso lu te  zero; at  any  finite t e m p e r a t u r e  
the  t he rma l  m o t i o n  of  the  a t o m s  will lead to " t h e r m a l  d i so rde r " ,  i .e .  a cer ta in  
f rac t ion  o f  a t o m s  will leave  the i r  a p p r o p r i a t e  subla t t ice  and  c h a n g e  into a 
" w r o n g "  sublat t ice .  In  t h e r m o d y n a m i c  equi l ibr ium the deg ree  of  d i so rde r  
(o r  defec t  concen t r a t i on )  is a charac te r i s t i c  cons t an t  a t  a g iven  t e m p e r a t u r e  
for  a pa r t i cu la r  a l loy s y s t e m  and  will inc rease  with t e m p e r a t u r e .  At a cer ta in  
cri t ical  t e m p e r a t u r e  T¢ the  subla t t ices  under  cons ide ra t ion  b e c o m e  indistin- 
gu i shab le  and  the  o rde r ing  of  the  s upe r s t ruc tu r e  g ives  w a y  to  a s tat is t ical  
d is t r ibut ion of  the  a toms .  

Such o r d e r - d i s o r d e r  t rans i t ions  have  f requent ly  b e e n  d e s c r i b e d  b y  m e a n s  
of  c lass ical  s t a t i s t i ca l - t he rmodynamic  a p p r o a c h e s  [1 -7 ] ;  m o s t l y  it is a s sumed ,  
in ana logy  to m a g n e t i c  t rans i t ions ,  tha t  they  are  s e c o n d  order ,  i .e.  cont inuous ,  
t r a n s f o r m a t i o n s  [8], a l though  Gr0nvold ,  for  example ,  found  in the  cou r se  
of  C ,  m e a s u r e m e n t s  on  Co3Se4, FeaSe4 and  Cr3Te4 [9-1  1] tha t  s o m e  first- 
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order character seems to be involved in the corresponding order--disorder 
transitions. 

At constant pressure and temperature the Gibbs energy of a constant 
amount of a crystalline substance tends towards a minimum value which 
will be reached if the component atoms arrange themselves on the available 
lattice sites in the corresponding equilibrium state of order. Assuming a 
long-range order parameter ~/, the Gibbs energy G(~) is composed of two 
counteracting functions of the order parameter: 

G0?) = H 0 7 ) -  Tk In W = H 0 ? ) -  TS¢o~07) (1) 

where H07) is the non-configurational contribution and Sco~(~7) = k in W is 
the configurational entropy according to Boltzmann. Since both W (and with 
it Sco~) and H increase with decreasing ~7 (i.e. H(~?) becomes less negative), 
the second term in eqn. (1) will be of particular importance at higher 
temperatures. At absolute zero, however, it will disappear and H(~7) alone 
will determine the equilibrium state. If any energetic ordering tendency exists 
in the system, H(W) will have its most negative value for ~7 = 1 and therefore 
perfect order will be established at T =  0 K. 

Wagner and Schottky [1] treat the H term in eqn. (1) by starting from 
an ideally ordered lattice into which point defects are introduced in a strictly 
statistical manner. The energy contribution of one defect of a particular kind 
is assumed to be constant, i.e. independent of the number of defects already 
present. This assumption has been justified by several authors by the relatively 
short range of interactions in the lattice [4, 12-14]: for practical purposes, 
frequently only nearest-neighbour interactions are of importance, so that the 
linear dependence of the H term on the defect concentration is only affected 
if defects become nearest neighbours in the lattice, for which the probability 
is minute if the concentration of defects is small and their distribution is 
statistical. Of course, the assumption of a statistical distribution of defects 
also makes the calculation of W possible. 

Given the restrictions discussed above, this so-called "zeroth approxi- 
mation" is only applicable for not too large defect concentrations, as already 
pointed out by Wagner and Schottky themselves [1]. (However, the range 
of applicability of the models can be successfully extended to higher defect 
concentrations and thus to larger deviations from the stoichiometric com- 
position by introducing "interaction energies" between defects, which consider 
the additional energetic effect of defect pairs on nearest-neighbour sites, as 
already pointed out very early by Anderson [15 ].) 

In the Gorsky-Bragg-Williams approximation [2, 3, 5], critical tem- 
peratures are calculated by assuming that the energy to transfer an atom 
from a "right" to a "wrong" lattice site is a linear function of the degree 
of order. This approach is certainly an improvement over the treatment by 
Wagner and Schottky [1 ]; yet the calculated critical temperatures, where the 
ordering dissolves completely into a random distribution of  atoms, will still 
be higher than the experimentally determined ones [16]. More sophisticated 
models for order-disorder transitions have been proposed in the past, such 
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as the "cluster variation model"  of Kikuchi [17, 18] or the approach by 
Gokcen [19], but  they require some quite involved mathematics. 

It is the object of the present  study to demonstrate, using the or- 
der-disorder  transition in the VsTe4 phase as an example, that a simple 
model such as the Wagner-Schot tky approach, which we have already used 
to describe partial thermodynamic properties in this phase [20], can likewise 
be applied successfully to the problem of order-disorder  transformations. 

2.  T h e  s u p e r s t r u c t u r e  o f  V3Te4 

Figure 1 shows the partial V-Te phase diagram according to Terzieff 
et al. [21]. In the composit ion range between 50 and 66.7 at.% T e a  series 
of phases exists in this system with crystal structures that can be derived 
from the NiAs (B8) type [ 21 -24  ]. Whereas, according to experimental evidence, 
the high temperature y phase crystallizes in the partially filled CdI2 structure 

1600 

T 
(K) 

1/,00 

1200 

1000 

800 

600 

400 

I I ° I 

- -  ~o 

_ \,, 
"f oN y+L 

-"~ °"~o, 
~ o 

1023 \ \  ~ x  k • 

VsTe + V3Te , 

, , i I 

55 

V3Te~ 

VsTe8- 

I 

I 

I I I I I I I 

60 

I I 

71' 
. . - f  

+ 

~79 

VTe2 
I , ,> 

65 at% Te 
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(see below), it was found that the phases at lower temperatures are char- 
acterized by an ordered arrangement of transition metal vacancies. 

The ideal NiAs structure can be envisioned as consisting of an h.c.p. 
arrangement of atoms of a main group element (metalloid) where all octahedral 
positions are filled with transition metal atoms [25]. Deviation from the 1:1 
stoichiometry can occur by interstitial transition metal atoms (in the trigonal- 
bipyramidal or double-tetrahedral sites) towards the transition-metal-rich side 
or by vacancies on regular (octahedral) transition metal positions towards 
the other side. Since all phases with NiAs-related crystal structures in transition 
metal-chalcogen systems are restricted to a composition range with chalcogen 
contents of more than 50 at.%, only the latter case will be of interest here. 
It is usually assumed that the metalloid sublattice remains unaffected. 

In order to understand the defect mechanism and the development of 
the various superstructures in these chalcogen systems, the transition metal 
sublattice is considered to consist of layers perpendicular to the crystallo- 
graphic c axis. While it must  be assumed that in the vicinity of the 1:1 
stoichiometry the transition metal vacancies are statistically distributed over 
all these layers, it is a well-known fact that for larger deviations the vacancies 
are usually restricted to alternate layers and the structure should be described 
more appropriately as partially filled CdI2 type (removing all transition metal 
atoms from alternate layers in an NiAs lattice leads to the CdI2 structure). 
Further ordering phenomena are frequently observed at lower temperatures, 
where the vacancies tend to arrange themselves in ordered patterns within 
alternate transition metal layers; such superstructures have been observed, 
for example, for compositions MvXs, MsXs, M3X4, M2X3 and MsX8 (where M 
is a transition metal and X is a chalcogen) [25, 26]. 

One of the characteristic features of the V-Te phase diagram (Fig. 1) 
is the existence of the V3Te4 phase field, which transforms at higher tem- 
peratures into the T phase. The ideal superstructure of this V3Te 4 phase is 
shown in Fig. 2(a) in a pseudo-orthorhombic setting (the Te atoms are 
omitted for clarity) and is commonly described as Cr3S4 type (C2/m) [27]; 
the unit cell of the NiAs structure is indicated for comparison. One can see 
that half the vanadium sites in every other layer are empty and that the 
vacancies are arranged in "strings"; an additional shift in the relative positions 
of these "str ings" leads to the doubling of the c parameter. 

In a recent study [20] we discussed the mechanism leading to non- 
stoichiometry in VaTe4: gradual filling of the vacant positions with V atoms 
or removal of V atoms from the originally occupied sites in alternate layers. 
On the basis of this mechanism a statistical model was developed to interpret 
earlier thermodynamic measurements by Ipser [28]. In the course of this 
study [20] it was also found that the best agreement between theoretical 
model and experimental tellurium activities was obtained with the assumption 
that with increasing tellurium content the typical 3:4 superstructure changes 
gradually to a (5:8)-type ordering. This was taken as an indication for the 
VsTe8 superstructure to exist up to much higher temperatures than previously 
assumed by Terzieff et al. [21] (see Fig. 1). 
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Fig. 2. Representation of the transition metal sublattice in two different NiAs-related super- 
structures: (a) Cr3S4 type; (b) V~Sea type. Completely filled layers of transition metal atoms 
alternate with partially occupied layers: O, transition metal atom; O, vacancy; bold lines, 
contours of unit cells in pseudo-orthorhombic representation; broken lines, outlines of simple 
NiAs cell. 

The structure reported for VsTes [29] (VsSe8 type, C2/m [30]) is shown 
in Fig. 2(b). In principle, considering only individual partially filled vanadium 
layers, the structure can be derived from the V3Te4 lattice if alternate V 
atoms are removed from the "strings" as discussed in ref. 20. This, however, 
leads to a somewhat  different stacking of the partially filled layers than 
shown in Fig. 2(b). On the other hand, it was pointed out by Brunie and 
Chevreton [30] that several stacking sequences are possible. Thus it is 
believed, also supported by the results of  ref. 20, that the stacking in VsTes 
is such that the structure can be directly derived from the Cr8S4 type. 

An additional indication for the existence of the (5:8)-type ordering up 
to considerably higher temperatures than shown in Fig. 1 seemed to be the 
shape of the phase boundary of the V3Te4 phase. As can be seen, the boundary 
is markedly unsymmetrical with respect  to the maximum. For the case that 
the (3:4)-type ordering was the only one present, one would expect  a more 
or less perfectly symmetrical transition curve. In the following it will be 
demonstrated on the basis of the Wagner-Schot tky type model derived in 
ref. 20 that this shape of  the phase boundary is in perfect agreement with 
the assumption that the (3:4)-type ordering changes continuously to a (5:8)- 
type ordering within this VsTe4 phase. 
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3. T h e o r e t i c a l  c a l c u l a t i o n  o f  t h e  o r d e r - d i s o r d e r  t r a n s i t i o n  in  V3Te4 

3.1. General description o f  the statistical model 
The derivation of the statistical model for NiAs-type phases with transition 

metal vacancies in alternate layers in the composition range of the V3Te4 
phase was demonstrated in full detail in ref. 20. It was shown that a continuous 
transition from a (3:4)-type to a (5:8)-type ordering can be accomplished 
if additional vacancies are created preferentially on every other vanadium 
position in these "strings" (see Fig. 5 of ref. 20). However, if V atoms are 
removed in a statistical way from the partially filled layers (the completely 
filled layers remain unchanged),  then the (3:4)-type ordering will more or  
less persist beyond the M~X8 composition until every other layer is completely 
empty and we arrive at a CdI2 lattice. 

In Fig. 3 a schematic NiAs-type crystal (consisting of 32 lattice sites) 
with a composition MsX4 and the corresponding 3:4 superstructure is separated 
into the different sublattices, neglecting the particular spatial arrangement; 
the nomenclature used here follows refs. 20 and 31. The double-headed 
arrows symbolize the possible defect equilibria due to thermal disorder. 

For the derivation of the model it was assumed that the tellurium 
sublattice (/3 sublattice; see Fig. 3) and every other layer of the vanadium 
sublattice ( a l  sublattice) remain completely filled. The partially filled vanadium 
layers (a2 sublattice) are assumed to consist of a2a  and a2b positions which 
are respectively completely empty or filled in the ideal Cr3S4 structure. The 
a2b sublattice can be further divided into the a 2 b l  and a2b2 positions (from 
now on b l  and b2 positions for simplicity) which consist of alternate sites 
in the transition metal "strings". For a pure 3:4 superstructure the b l  and 
b2 positions are indistinguishable; however, if additional (5:8)-type ordering 
occurs, then this can be explained by different tendencies of the b l  and b2 
sublattices to carry vacancies. 

~ p -sub[. 
Te -sub[.) 

I - -~-~ ,'261 ] _ .~ L a-sub[at t ice 
l l l l l , , , 2 b 2  l .a2-subt.  I . . .  - . . . . .  iT:i--I--fo2a J j,v-s L t,ce) 

] lattice site with Te-atom 

] I.atfice site with V-a tom 

] [attice site empty 

= defect equilibria 

Fig. 3. Schematic representa t ion  of an  NiAs-type crystal (consist ing of 32 lattice sites) with 
a composi t ion M~X4 and the corresponding 3:4 superstructure.  The lattice is separated into 
different sublattices. 
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As mentioned above, there  will always be a certain degree of disorder 
at finite temperatures,  even at the exact  stoichiometric composition, due to 
thermal motion of the atoms. For the CrsS4 structure type this is assumed 
to be mainly due to transition metal atoms changing from filled a2b sites 
to empty a2a sites (for simpl'city, a sites) (see Fig. 3). The resulting defect 
concentrations, i.e. V atoms on the a sublattice and vacancies on the b l  or 
b2 sublattice, are constant with time (dynamic equilibria) and are functions 
of the temperature.  Two different disorder parameters  were defined in ref. 
20 for the "ordering concentrat ion" M3X4: 

where N~ I and N~ 2 are the numbers of  vacancies on b l  and b2 sites 
respectively and Y t is the total number  of lattice sites in an NiAs lattice, 
i . e .  N t = N  a + N  ~ = N  al + N  a + N  bl + Y  b2 + N  ~s. It is clear that for the case a = fl 
any additional vacancies will be distributed in a statistical way over all b 
sites; if a and fl are different, then we will have a tendency to approach a 
(5:8)-type ordering with increasing number  of vacancies on the b sites. For 
a =  fl = 0 the Cr3S4 structure would be ideal, which is possible only at 0 K; 
for a = / 3 =  1/32 =0 .03125  the (3:4)-type ordering would disappear entirely 
and the vacancies would be statistically distributed over alternate layers 
(partially filled CdI2 structure; see also ref. 20). 

Using these disorder parameters,  theoretical equations were derived in 
ref. 20 which describe the composition dependence of  the thermodynamic 
activities of  vanadium and tellurium in the range including the compositions 
M3X4 and M~Y8. Applying the model to the experimental  tellurium activities 
(from ref. 28) at 1023 K, the best agreement  was obtained with the parameters  
a =  0.00039, fl= 0.004 and In aTe(3:4)= --4.35 (where a-re(3:4) is the tellurium 
activity at the exact 3:4 stoichiometry). From the considerable difference 
between a and fl it was concluded that the (5:8)-type ordering must still 
exist at 1023 K. 

3.2. Temperature dependence of the disorder parameter 
At the stoichiometric 3:4 composit ion we can write for  constant pressure 

and for constant numbers of  moles, nv and nTe, 

V = V(~, fl, T) (3) 

and in thermodynamic equilibrium the Gibbs energy must be a minimum 
with respect  to a and fl: 

( a G ) = o  (4a) 

7a r.~ 

T,a 
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If G is separated into configurational and non-configurational terms, eqn. 
(3) can be expanded (for T= constant) as 

G = H ( a ,  f~) - TSth(a, [3) - TS¢o~(a, ~) (5) 

where Sth is the thermal, i .e.  non-configurational, entropy contribution. 
Combining eqns. (4) and (5), one obtains 

¢) 
• ,~ \a~]~,o  \ a~ 1~,~ 

(6a) 

(65) 

According to Wagner and Schottky [1], Sth and H are linear functions of 
the defect concentrations and therefore also of a and  fl, i .e.  the derivatives 
of the non-configurational terms must be constants (C~-C4): 

7",13 T,[J T,a r ,a  

Any possible temperature dependence of these constants is neglected. From 
this follows 

(i)Sc°~/ -~ -C2 (7a) C_! 

~a ]r,~ T 

c~ 
~ ]~,~ T 

These derivatives can be calculated using Boltzmann's formula and Stirling's 
approximation as shown in ref. 20; for the exact stoichiometric 3:4 composition 
one obtains 

g t ( 16a 8(a+fl)  
( i ) S c ° ~ / - R  In (8a) 

~[3 ]T, = R ~  In 1:1-6f3 1 - 8 ( a + f l ) ]  (8b) 

(N~. is Avogadro's number), which yield after division by the constant term 
R,1Vt/NL t he  relationships 

\'1Z-i"6a 1 - S ( a + ~ ) ]  -~ --c2 (ga) 

16/3 8(a+/3) ~ ca 
1 - 1 6 ~  1 - - ~ . ~ - ~ y  -- ¥ -c4  (95) 
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where c~-.c4 are constants.  If we know a and fl at two different temperatures,  
we have four equations to solve for the four constants and we can calculate 
the temperature  dependences  a =  a(T) and f~ = ~(T). 

The values of a and fl for the V~Te4 phase are known at 1023 K from 
ref. 20; to obtain values at a second temperature,  the tellurium activities 
were converted to 1073 K using the corresponding partial molar enthalpies 
~We and the resulting curve was evaluated in terms of the theoretical model 
(Fig. 4). This resulted in a = 0 . 0 0 0 9 3  and f l=0 .0062  at 1073 K and together  
with the values a = 0 . 0 0 0 3 9  and f l = 0 . 0 0 4 0  at 1023 K from ref. 20 it was 
possible to compute  the constants cl-c4. 

Furthermore,  as discussed above, the (3:4)-type superstructure gives 
way to a statistical vacancy distribution in alternate transition metal layers 
(partially filled CdI2 type) if a =  f l= 1/32 =0 .03125 .  From this condition the 
ideal critical temperature  can be derived using eqns. (9), yielding 

Cl C3 
Tc.id -- -- (10) 

C2 C 4 

and with the values of c~-.c4 calculated above one obtains T¢,~d = 1423 K. 
The variation in the disorder parameters  a and fl with temperature for the 
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Fig. 4. Natural  logar i thm of  tel lur ium activity at 1073 K as a funct ion o f  compos i t ion  within 
the V3Te4 phase.  The full line s h o w s  the theoret ical  curve calculated wi th  a = 0.00093,  fl = 0.0062 
and In C~re(3:4)= -- 3.76. 
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V3Te4 phase is shown in Fig. 5. It can be seen that the two parameters 
become equal at 1423 K, where they reach the critical value 1/32=0.03125; 
any larger value would be physically meaningless. 

It has to be pointed out here that the assumptions of the present model 
result in the fact that if a and /3 are different, they will remain so below 
the ideal critical temperature, although their temperature variations may differ 
considerably. This means that the tendency to form a (5:8)-type ordering 
does not disappear before the (3:4)-type superstructure disappears. Fur- 
thermore, it can be shown that the ideal critical temperature calculated 
according to the Wagner-Schottky-type model (without considering interaction 
energies between like defects) turns out to be composition independent. 

From Fig. 1 it can be seen that the experimentally determined transition 
temperature, Tc = 1180 K at about 57.1 at.% Te, is far below the ideal critical 
temperature of 1423 K. Therefore we must conclude that the ordering breaks 
down at a certain limiting defect concentration in the lattice. A possible way 
to calculate the transition temperatures on the basis of this assumption will 
be presented below. 

3.3. The long-range order  p a r a m e t e r  ~1 
In order to define the degree of disorder in the entire V3Te4 phase in 

a mathematical way, we will introduce the composition-dependent long-range 
order parameter ~7 according to Bragg and Williams [2, 3]: 

8 bl b2 
__ N ;  ( ~ 1  _g~2] + ~D +N[] -Nt3l) (11) 

a , p !  , , I i , 

0.03 
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0.01 

0.00 I 
800 1000 1200 1/,.00 T (K)  

Fig. 5. Disorder parameters a and fl for the VzTe4 phase as a function of temperature. Tc,id = 

1423 K for a=fl=l/32=0.03125. 
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It can be shown (see Fig. 3) that t / =  1 for ideal (3:4)-type and (5:8)-type 
ordering and that ~ = 0 if the 3:4 superstructure disappears completely, i .e. 
for a partially filled CdI2 type. 

Figure 6 shows the variation in ~/ with temperature  for stoichiometric 
V~Te4 obtained with eqn. (11) and using the relationships between the defect 
concentrat ions and the parameters  a and fl as given in the definitions in 
eqns. (2). 

Let us define ~?c as the critical value of the long-range order  parameter  
where the superstructure breaks down, i.e. for V > ~?c the ordered vacancy 
arrangement  will be stable, while for  ~7 < ~7¢ we will have a statistical distribution 
of the vanadium vacancies in alternate layers. It is further assumed that ~¢ 
is a constant  for the entire homogenei ty  range of the V3Te4 phase and that 
the ordering breaks down if ~7 becomes smaller than ~7~ at any composit ion 
within the phase. 

The experimentally determined transition temperature  for stoichiometric 
VaTe4 is To= 1180 K [21] and this temperature  is marked in Fig. 6, resulting 
in a value of ~%= 0.79. From this it is concluded that long-range order  can 
only exist for larger values of ~/, whereas for ~?<0.79 a random vacancy 
distribution over the a2b sublattice will be stable. This was assumed to be 
valid for the entire homogenei ty range, as discussed above. 

If the long-range order  parameter  ~/ is calculated as a function of  
composit ion for different temperatures,  using the model equations of ref. 
20 and the temperature  dependence of a and fl derived here, one obtains 
the diagram in Fig. 7. It is interesting to observe that the maximum in the 
curve of ~ vs.  T shifts gradually to higher tellurium contents with increasing 
temperature  or decreasing order. The value ~7~ = 0.79 is indicated as a horizontal 
line in this figure; from the intersections of this line with the 77 curves it is 
possible to determine the phase boundaries at different temperatures.  It has 
to be noted that according to the simple model presented here, the trans- 
formation would be of first order, since ~7 changes abruptly from 0.79 to 
zero. 

The final result is given in Fig. 8, where the calculated phase boundary 
is compared with the experimental  phase diagram according to Terzieff 
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Fig. 6. Long-range order parameter ~7 for stoichiometric VaTe 4 as  a funct ion of temperature. 
The critical value ~¢=0 .79  is reached at To= 1180 K. 
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Fig. 7. Long-range order parameter ~ as a fire.ion of composition for different temperatures. 
The hypothetical isotherm at T=O K is included as a broken line. 

et al. [21]. It can be seen that the agreement is very good and that  the 
width of the phase field is correctly obtained. However, owing to the presence 
of (5:8)-type ordering in the VsTe4 phase, the maximum in the theoretical 
curve is shifted slightly away from the stoichiometric composition to about 
57.8 at.°/o Te (see Fig. 7) and the temperature of the maximum is calculated 
as 1185 K, which is still within experimental error. 

A comparison with data for the CuzAu phase shows that a similar critical 
long-range order parameter was found in this case. As discussed by Guttman 
[32], several authors observed a gradual diminishing of the long-range order 
parameter with temperature in Cu~Au down to about 0.8, which is followed 
by a sudden drop to zero at the critical temperature where the superstructure 
disappears [33-35]. The coincidence with the present value ~c=0.79  for 
VsTe4 is quite remarkable. 

4. C o n c l u s i o n s  

The good agreement between theoretical and experimental phase bound- 
aries shows that the approximations of the Wagner-Schottky model yield in 
principle a correct description of the order-disorder transition. Likewise it 
proves that the assumption of a composition-independent critical long-range 
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Fig. 8. Comparison of the calculated phase boundary (full curve) with the experimental phase 
diagram (broken curve): O, thermal effects; O, magnetic effects. 

order parameter  -,7¢ for the V3Te4 phase is a good and useful approach. On 
the other hand, the good agreement confirms also the consistency of the 
thermodynamic data of Ipser [28] (from which the parameters a and fl were 
deduced) with the differential thermal analysis measurements  of Terzieff et 

al.  [21 ]. 
It can be shown with the present model  that a (3:4)-type ordering alone 

would result in a symmetrical transformation curve for the V3Te4 phase. Only 
the inclusion of  an additional (5:8)-type ordering tendency within the ho- 
mogeneity range of  this phase yields this unsymmetrical phase boundary. 
Thus the shape of the experimentally determined boundary confirms the 
conclusion drawn from the activity curves [20] that an additional (5:8)-type 
ordering tendency exists in the VaTe4 phase up to the temperature where 
the order-disorder  transformation occurs. 

Brunie and Chevreton [29] found this VsTe8 superstructure only in slowly 
cooled samples, whereas they reported that the additional ordering had 
disappeared for samples quenched from 1073 K which showed the Cr3S4 
type superstructure only. This, of course, would not quite agree with our 
results. A possible explanation could be that with increasing disorder (and 
thus with increasing temperature) the 5:8 superstructure would be more and 
more difficult to distinguish. However, we hope that it will be possible to 
clarify this question in the near future by high temperature X-ray and Cp 
measurements.  
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